H(t)=-16t^2-8t+120

Simple and best practice solution for H(t)=-16t^2-8t+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2-8t+120 equation:



(H)=-16H^2-8H+120
We move all terms to the left:
(H)-(-16H^2-8H+120)=0
We get rid of parentheses
16H^2+8H+H-120=0
We add all the numbers together, and all the variables
16H^2+9H-120=0
a = 16; b = 9; c = -120;
Δ = b2-4ac
Δ = 92-4·16·(-120)
Δ = 7761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{7761}}{2*16}=\frac{-9-\sqrt{7761}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{7761}}{2*16}=\frac{-9+\sqrt{7761}}{32} $

See similar equations:

| 36=-4x-2(-4x-6) | | 4j^2=8j+3 | | h/0.5*0.5=7/0.5 | | 8+h10​ =39​ −2 | | 7.5+k-7.5=10-7.5 | | -4x+5(-x-8)=59 | | 35=3x+2(-3x+4) | | 12x-4+10x-10=180 | | (x+6)(x+4)=39 | | 2(2x^2-5)=3(2-3x^2) | | 0=x^2-10+25 | | 135=-3x+2(-7x-9) | | X^-4x-12=0 | | Y=^2+11x+30 | | 4x2−12=0 | | x^2-4-8=0 | | 6x-5(7x-7)=180 | | 2x^2-9=119 | | (6x-8)-(8x+3)=x | | 500-15x=350 | | 5m-15=7m-17 | | 59=3x+5(2x-9) | | 5m-15=7m-27 | | 14-x/4=8 | | 14y-11y-6=11y-7 | | -5x+75=45 | | 8x+153x+20=46 | | 3x+3+75=180 | | 14y-11y-6=11y-27 | | -12r2+5r+3=0 | | 6x+3x=327 | | 2^(x+1)=8x |

Equations solver categories